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Abstract--The coordinatively unsaturated complex [Fe2 (CO) s (#-PBu~) (#-PCy2)] 
( F ~ F e )  (1) adds spontaneously dppm [dppm = bis(diphenylphosphino)methane] and 
yields the saturated compound [Fe2(CO)s(#-PBu~)(#-PCyE)(dppm-P)] (2). Compounds 1 
and 2 exist in a reversible thermal equilibrium; heating 2 in toluene produces 1 together 
with the free ligand dppm, whereas by cooling to room temperature 2 is recovered. A 
conversion of 2 into the known complex [FeE (CO)3 (#-PBu~)(#-PCy2)~-dppm)] (3) is only 
possible by photochemical means. Compound 3 is readily transformed back into 2 by 
carbon monoxide under normal conditions. The molecular structure of 2 determined by X- 
ray analysis is described. 

Recently, we reported the synthesis of the unpre- 
cedented triply-bridged electron-poor complex 
[Fe2 (CO)3 (#-PBu~) (#-PCy2) (#-dppm)] (3) by ad- 
dition of dppm to the coordinatively unsaturated 
compound [Fe2 (CO) 5 (#-PBu~) (#-PCy2)] ( F ~ F e )  
(1) under UV irradiation) Hogarth and Lavender 2 
described the closely related, but sterically less 
demanding, complexes [FeE (CO) 4 (p-PPh2) (p-PR2) 
(#-dppm)] (R = Ph, Cy) and therefore we were 
faced with the question about the existence 
of the compound [Fe/(CO)4(p-PBu~)(#-PCyE)(#- 
dppm)]. We found that 1 reacts in a first step 
spontaneously with dppm to form [FeE(CO)5 
(#-PBu~)(p-PCy2)(dppm-P)] (2) as a complex with 
dppm in monodentate coordination, which is rela- 
tively rare in such binuclear systems. The results of 
the X-ray crystal structure determination of 2, as 
well as some reactions with this compound, are 
described in this paper. 

* Authors to whom correspondence should be addressed. 

EXPERIMENTAL 

All reactions were performed under oxygen-free 
argon using conventional Schlenk techniques. Sol- 
vents were dried over molecular sieves or over 
sodium benzophenone ketyl and distilled under 
argon prior to use. Starting materials were either 
commercially available or were prepared as 
described elsewhere: [Fe2(CO)5(p-PBu~)(p-PCy2)] 
and [Fe:(CO)3 (#-PBu~)(#-PCy2)(#-dppm)]. 1 

Preparation of [Fe2 (CO) 5 (#-PBu~) (#-PCy2) 
(dppm-P)] (2) 

To a solution of I (594 mg, 1 mmol) in 40 cm 3 
THF, dppm was added (384 mg, 1 mmol) and the 
mixture stirred at room temperature for 2 h. The 
colour of the solution changes quickly from deep 
green to violet-brown. The THF was removed in 
vacuo and the residue extracted three times with 15 
cm a pentane. The combined extracts were filtered, 
concentrated in vacuo to ca 15 cm 3 and crystallized 
at -30°C. Yield 970 mg 2 (~  100%), violet-brown 
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needles, m.p. 143-144°C (decomp.). Found: C, 
61.2; H, 6.5; P, 12.5. Calc. for CsoH62FezOsP4: C, 
61.4; H, 6.3; P, 12.7%. IR (KBr) : 1987 (s), 1950 
(s), 1901 (vs, br, sh) ; (CHzC12) : 1990 (s), 1952 (s), 
1900 (vs). 31p{1H} NMR (CD2C12): ~$ 330.3 
(d, 2jpa = 52 Hz, p-PBut0, 233.9 (dd, 2Jpa = 52 HZ, 
2jep = 12 Hz, #-PCy2), 62.7 (dd, 2jpa = 46 Hz, 
2jpp = 12 Hz, dppm-P), -25.4 (d, 2Jpe = 46 Hz, 
dppm-P); a coupling 2jvp between p-PBu~ and 
dppm-P was practically not observed. 1H NMR" 
for discussion see text. 

Thermal equilibrium between 2 and 1 

Compound 2 (489 mg, 0.5 mmol) was refluxed in 
toluene (20 cm 3) for 30 min. During the heating 
to the b.p., the solution became immediately deep 
green. The reaction is reversible ; during cooling to 
room temperature the colour of the solution 
became violet-brown; 2 was detectable by spec- 
troscopic means. 

Reaction of 2 with carbon monoxide 

Compound 2 (489 mg, 0.5 mmol) was dissolved 
in THF (20 cm 3) and a stream of CO was bubbled 
through the solution at room temperature for 3 h. 
The solvent was removed in vacuo and the residue 
extracted with pentane. Cooling at -30°C over- 
night yielded unchanged 2, characterized by IR and 
NMR measurements. 

Reaction of 2 with carbon monoxide under pressure 

Compound 2 (489 mg, 0.5 mmol) was dissolved 
in THF (20 cm 3) and transferred into a 200-ml steel 
autoclave. The solution was pressurized with 20 bar 
CO and stirred at room temperature for 2 h. After 
venting, the resulting deep violet solution was evap- 
orated to dryness. The residue was extracted with 
pentane; a colourless solid remained which was 
identified as dppm. Compound 4 crystallized from 
the deep violet solution at -78°C in nearly quan- 
titative yield, characterized by the known spec- 
troscopic data) 

Crystal structure determination for complex 2 

Single crystals of 2 were obtained by slow 
diffusion of hexane into a concentrated THF solu- 
tion of the compound. A summary of crystal data 
and details of the structure determination are given 
in Table 1. 

The intensity data were collected on a Stoe 
STADI-4 diffractometer at room temperature, 
using graphite-monochromated Mo-K, radiation 
(2 = 0.71073/~) and the 09--0 scan measuring tech- 
nique. Lattice constants were obtained by a least- 
squares treatment of the setting angles of 64 reflec- 
tions. Lorentz and polarization corrections were 
applied during data reduction. Additionally, an 
empirical absorption correction (0-scan method, 
transmission factors in the range of 0.762-0.849) 
was performed. The structure was solved by direct 
methods a and refined by full-matrix least-squares 
on F 25 with anisotropic displacement parameters 
for the non-hydrogen atoms of the complex 
molecule. The hydrogen atoms were placed at their 
geometrically calculated positions and the methyl 
groups were treated as rigid groups. A difference 
Fourier map reveals several additional peaks out- 
side the complex, with heights of 0.8-1.1 e A-3, 
which pointed to the presence of THF. The sub- 
sequent refinement applying geometrical restraints 
indicated a disorder phenomenon : two THF mol- 
ecules differentiated from each other by their orien- 
tation occupy alternatively the same site in the 
crystal lattice. Each THF molecule was included in 
the final refinement with a site occupation factor of 
0.25 and isotropic displacement parameters for the 
non-hydrogen atoms. 

Tables of atomic coordinates and displacement 
parameters, lists of observed and calculated struc- 
ture factors and complete lists of bond lengths and 
angles have been deposited with the Editor ; atomic 
coordinates have also been deposited with the Cam- 
bridge Crystallographic Data Centre. 

RESULTS AND DISCUSSION 

Synthesis and reactions 

Reaction of 3 with carbon monoxide 

Compound 3 (461 mg, 0.5 mmol) was dissolved 
in THF (20 cm 3) and a stream of CO was bubbled 
through the solution at room temperature for 1 
h. A noticeable colour change from red-brown to 
violet-brown after 30 min was observed. The sol- 
vent was removed in vacuo and the residue extracted 
with pentane. By cooling at -30°C overnight, 2 
was obtained in nearly quantitative yield. 

Two linked metal centres are preferably bridged 
by the ligand dppm in a bidentate coordination 
mode. 6 The monodentate coordination is relatively 
rare, as discussed by Puddephatt, 7 and we have 
shown that dppm is even able to bridge strongly 
sterically demanding systems with metal-metal 
bonds, l The existence of [Fe2(CO)4(#-PPh2)(p- 
PRE)(#-dppm)] (R = Ph, Cy) 2 prompted us to 
search for a synthetic way to the analogous com- 
plex [Fe2 (CO)4 (#-PBu~)(/~-PCy2)(#-dppm)]. If the 
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Table 1. Crystal data and details of X-ray structure analysis of 2" 0.5THF 
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Empirical formula 

Molecular weight 
(g mol- l) 

Crystal system 
Space group 
Lattice parameters 

a (/~) 
b (A) 
c (A) 

/~ (°) 

v (A ~) 
z 

F(000) 

D~1¢ (g cm-3) 

#(Mo-K,) (cm-') 

CsoH62FezOsP4' 0.5 (C4H80) 

1014.6 

monoclinic 
P2t/n 

11.803(2) 
22.930(4) 
20.447(4) 

104.77(1) 

5351(2) 
4 

2136 

1.259 

7.06 

Crystal size (mm) 
Check reflections 

0.46 x 0.28 x 0.28 
3, no significant intensity 

variation 

Range of measurement (°) 3 ~< 20 ~< 48 
Min. h, k,//max, h, k, l - 13, 0, 0/13, 26, 23 
Independent reflections 8373 
Reflections used in refinement 8352 
Reflections/parameter 14.0 

Weighting scheme w = l/[a2(F g) + (0.0649P) 2 

+4.5624P], ? = (F02 +2F:)/3 

Max. shift/a (last least- 0.005 
squares cycle) 

Min./max. heights in the -0.37/0.63 
final Ap map (e ,~-3) 

R(F)/wR(F2)/S(F 2) (all data) 0.072/0.141/1.10 

reaction of 1 with dppm in THF is carried out 
without UV irradiation and without passing a 
stream of argon through the solution we can obtain 
the binuclear compound 2 with dppm in mono- 
dentate coordination, as outlined in eq. (1). 

dppm 

[Fe2 (CO) 5 (/~-PBu~) (p-PCy2)] , 
1 

[Fe2 (CO) 5 (/~-PBu~) (#-PCy2) (dppm-a)] (1) 
2 

The new complex 2 was characterized by micro- 
analysis, IR and alp N M R  spectra (see Exper- 
imental). Surprisingly, no coupling between the 
phosphorus of  the #-PBu~ bridge and the coor- 
dinated phosphorus of dppm could be observed. ~H 
N M R  measurements are complicated since already 
at room temperature in solution a slow separation 
of the dppm occurs and a mixture of 1, 2 and the 
free dppm can be identified (also by 3~p NMR). 
Therefore, we were especially interested in an X- 
ray crystal structure determination of 2. 

Following the aim to obtain a coordinatively 
saturated triply bridged tetracarbonyl species, we 
studied a thermal reaction with 2 in toluene. Some 
reactions are known in which a change from the 
monodentate to the bidendate coordination mode 
of dppm is realized, for instance [Cr(CO)s(dppm- 
P)] yields, on heating under loss of CO, the complex 
[Cr(CO)4(r/E.dppm)].8 If a solution of 2 is heated, a 
colour change from violet-brown to deep green is 

observed, indicating the formation of 1. The process 
is reversible, cooling yielding a colour change back 
to violet-brown, and by spectroscopic means 2 can 
be detected: 

heating 
2. "I +dppm. (2) 

cooling 

Consequently, by this thermal reaction pathway a 
possible tetracarbonyl species is not obtainable and 
we tested a reaction under photochemical con- 
ditions in THF, but without the argon stream. In 
this case we could detect by spectroscopic means 
only a mixture of 2 and 3. If  a stream of argon is 
bubbled through the solution during irradiation, a 
clean conversion of 2 into 3 takes place. A con- 
version of 3 back into 2 is also possible by passing 
a stream of CO through a solution of 3 in THF at 
room temperature : 

hv,- CO 

2 .  " 3. (3) 
+ C O  

The reaction occurs relatively rapidly and, there- 
fore, also by this way no tetracarbonyl species was 
detectable. A change from the bridging bidentate 
to the monodentate coordination of dppm is not 
surprising; some examples are known.  For 
instance, the CO-based equilibrium 

+ C O  

[Ni2 ~-CO) (CO) 2 (/a-dppm) 2] (Ni-Ni).  " 
- CO 
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Fig. 1. Molecular structure of [Fe2(CO)5(p-PBu~)(#-PCy2)(dppm-P)] (2). 

+ 2 C O  

[Ni2 (CO), (#-dppm) 2] ~ 2[Ni(CO) 3 (dppm-P)] 
- -  2 C O  

was described as fully reversible in solution. 9 
However, in our case probably a break of the 
F ~ F e  bond in 3 and 2 is prevented by the presence 
of both phosphido groups. Furthermore, we studied 
whether a reaction of 2 with CO is possible yielding 
the coordinatively saturated compound [FeE 
(CO)6(#-PBu~)(p-PCy2)] (4) 3 and the free ligand 
dppm. By passing a stream of CO through a solu- 
tion of 2 we could not observe any reaction (IR, 
NMR). Although the dppm seems to be only 
weakly bound (deduced from the thermal insta- 
bility of 2), under normal conditions the CO is not 
capable of displacing the phosphine ligand. 
However, assuming that this should be possible 
under increased CO pressure, we tried a reaction of 
2 with 20 bar CO (2 h, THF, room temperature) 
and this treatment indeed resulted in the formation 
of 4 and dppm (see Experimental). 

Crystal structure o f  [Fe2(CO)s(#-PBu~)(#-PCy2) 
(dppm-P)] (2) 

Compound 2 crystallizes as the solvated species 
2" 0.5 THF, which was the subject of investigation. 
As a result, the THF molecules are located in voids 
between the complex molecules within the crystal 
lattice. The observed intermolecular contact dis- 
tances give no indication of special interactions 
between solvent and complex molecules and, thus, 

for a noticeable influence of the former on the 
molecular structure of the latter. Therefore, in the 
following only the molecular structure of 2 will be 
discussed. 

The results of the X-ray analysis confirmed the 
assumed structure of 2 as a doubly-bridged di-iron 
complex with two non-equivalent metal atoms and 
the dppm ligand in monodentate coordination. The 
molecular structure of 2 is illustrated by Fig. 1; 
relevant geometric parameters are given in Table 2. 

The Fe2Pz core in 2 shows nearly exact planarity. 
The dihedral angle ® between the two Fe2P planes 
describing the fold of the core with respect to the 
P . . .  P line amounts to 178.5 °. The phosphine donor 
atom P(3) deviates only very slightly by 0.044(1) 
from the Fe2P2 best plane. The Fe--Fe distance of 
2.719(1) ,~ indicates clearly a single bond between 
the two iron atoms. Ignoring the Fe--Fe bond, 
the coordination spheres of the iron atoms can be 
interpreted as strongly distorted tetragonal pyra- 
mids with P(2) located in both apical positions and 
P(1) • • - P(2) as a common edge. The different coor- 
dination spheres of the two iron atoms is reflected 
in their distances to the bridging phosphorus atoms 
(cfTable 2) : the Fe(1)--P bond lengths are about 
0.05/~ shorter than those in which Fe(2) is involved. 

The molecular structure of 2 is strongly related 
to that of the parent complex [FeE (CO)6 (p-PBu~) 
(p-PCy2)], 3 as well as to those of the anal- 
ogous phosphine complexes [Fe2 (CO)5 (p-PBu~) 
(p-PCy2)(PR~R")] with R' = R" = Bu n and R' = 
Ph, R" = H, respectively} An agreement to a very 
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Table 2. Relevant bond lengths (/~) and angles (°) for 2 

Fe(1)--Fe(2) 2.719(1) 
Fe(1)--P(1) 2.231(1) 
Fe(1)--P(2) 2.230(1) 
Fe(1)--a(3) 2.242(1) 
Fe(1)--C(1) 1.779(4) 
Fe(1)--C(2) 1.773(4) 

Fe(l)--P(1)--Fe(2) 73.95(3) 
P(1)--Fe(1)--P(2) 107.45(4) 
P(1)--Fe(1)--P(3) 138.98(4) 
P(1)--Fe(1)--C(1) 87.8(1) 
P(1)--Fe(1)--C(2) 86.3(1) 
P(2)--Fe(I)--P(3) 113.57(4) 
P(2)--Fe(1)--C(1) 99.9(1) 
P(2)iFe(1)--C(2) 103.2(1) 
P(3)--Fe(1)--C(I) 85.1(1) 
P(3)--Fe(1)--C(2) 84.6(1) 
C(1)--Fe(1)---C(2) 156.8(2) 

Fe(2)--P(1) 2.288(1) 
Fe(2)ip(2) 2.268(1) 
Fe(2)---C(3) 1.783(5) 
Fe(2)---C(4) 1.755(5) 
Fe(2)--C(5) 1.770(5) 

Fe(1)--P(2)--Fe(2) 74.36(4) 
P(I)iFe(2)--P(2) 104.23(4) 
P(1)--Fe(2)--C(3) 85.5(1) 
P(1)--Fe(2)--C(4) 165.8(2) 
P(1)--Fe(2)--C(5) 90.9(2) 
P(Z)--Fe(2)-~(3) 116.2(2) 
P(Z)--Fe(2)-~(4) 89.3(2) 
P(2)--Fe(2)-~(5) 109.6(2) 
C(3)--Fe(2)--C(4) 84.4(2) 
C(3)--Fe(2)--C(5) 133.4(2) 
C(4)--Fe(2)--C(5) 88.8(2) 
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large extent can be noticed for all relevant details 
of molecular geometry of  the four complexes. Thus, 
the F e - - F e  distances are in the close range of 
2.686(2)-2.719(1) A. 
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